

Tasks

E01 - 1

Tasks for the
PC WORX 6 - IEC 61131 Programming Course

Reference: PC WORX 6.00.25 SP3.73

Overview of tasks: 2
Tasks regarding communication path setting: TCP/IP 3

Com 1 Checking the IP address 3

Com 2 Setting up the communication path 3

Com 3 Using symbolic connection names 3

Tasks regarding INTERBUS bus configuration 4
IBS1 Bus configuration (online) 4
IBS2 Extending the bus configuration (offline) (optional) 4

Tasks regarding PROFINET bus configuration 4
PN1 Bus configuration (online) 4

Tasks regarding configuration and variables 5
PV1 Creating process data variables 5
PV2 I/O control for process data variables 6
PV3 Adapting variable names 7
PV4 Use of direct inputs (optional) 8
PV5 Customization of the project 8

Tasks regarding programming in function block diagram 9
FBDa First programming 9
FBDb First function 10
FBD1 Function FU_Xor3_FBD 11
FBD2 Function block FB_TFlipflop_FBD 12
FBD3 Function block FB_Cascade_cycle_FBD 13
FBD4 Functions for analog value processing 14

[a] Basic functions: FU_Norm_FBD 14
[b] Extension by binary range selection: FU_NormSel_FBD 15
[c] Extension for user-defined scaling: FU_NormMinMax_FBD 15

Tasks regarding programming in ladder diagram 16
LD1 Function FU_Xor3_LD 16
LD2 Function block FB_TFlipflop_LD 17

Tasks regarding programming in instruction list 18
IL1 Function FU_Xor3_IL 18
IL4 Functions for analog value processing 19

[a] Basic functions: FU_Norm_IL 19
[b] Extension by binary range selection: FU_NormSel_IL 19
[c] Extension for user-defined scaling: FU_NormMinMax_IL 19

IL3 Function block FB_Cascade_cycle_IL 20
IL2 Function block FB_TFlipflop_IL 21

Tasks regarding programming in sequential function chart 22I

Tasks

E01 - 2

SFC5 Function block FB_Traff_light_SFC 22
[a] Basic functions 22
[b] Extended functions with error flashing 23

Tasks regarding programming in structured text 24
ST1 Function FU_Xor3_ST 24
ST4 Functions for analog value processing 25

[a] Basic functions: FU_Norm_ST 25
[b] Extension by binary range selection: FU_NormSel_ST 25
[c] Extension for user-defined scaling: FU_NormMinMax_ST 25

ST3 Function block FB_Cascade_cycle_ST 26
ST2 Function block FB_TFlipflop_ST (optional) 26
ST5 Function block FB_Traffic_lights_ST (optional) 27
ST6 Logging of INTERBUS errors with FIFO memory 28

[a] Data type definition 28
[b] Program for error logging: 29
[c] Device name in plain text 32

Support for task ST6 34

Overview of tasks:

POU-
Type_Function_Language FBD LD IL SFC ST UDT/BIB

1

2

3

4[a]

4[b]

4[c]

5

6[a]

6[b]

6[c]

Symbol key:

Function
Function block
Program
Data type worksheet
Library

Tasks

E01 - 3

Tasks regarding communication path setting: TCP/IP

Com 1 Checking the IP address

To establish a communication connection via TCP/IP, it is required that both communication
partners (i.e., PC WORX and the controller used) are assigned a valid IP address (including
the subnet mask). If this is not (yet) the case or not known for the controller used, the IP
address can always be checked via the serial interface located on the controller and be
set, if required.

First, set the IP address and the subnet mask on your controller according to the
specifications given by your speaker.

Documentation: Page 3-11

controller.

Com 2 Setting up the communication path

To exchange data between PC WORX and the corresponding controller, it is required to
select a communication path for each controller. Even though the serial interface is available
for all controllers, it is recommended to set the TCP/IP communication path, ensuring in this
way a faster data exchange.
Therefore, select TCP/IP as the communication path for the controller within the project.

dropdown menu (see COM 1 task) and test the connection.

Documentation: Pages 3-7, 3-16

Com 3 Using symbolic connection names

Once the connection has been established successfully, create a new symbolic connection
controller and select it

afterwards. Then test the connection to your controller again.

Documentation: Page 3-17

Tasks

E01 - 4

Tasks regarding INTERBUS bus configuration

IBS1 Bus configuration (online)

Use the controller to view the connected bus configuration via the Connected Bus dialog box.
Copy this configuration (bus devices on basis installation platform) by selecting the
corresponding devices from the range of available devices.

Documentation: Pages 4-6ff.

IBS2 Extending the bus configuration (offline) (optional)

After connecting the devices that are directly connected to the controller to the remaining
remote bus devices, use the device catalog to also extend the bus configuration in the
software. The devices to be added are shown in the screenshot below.

Documentation: Page 4-10

Tasks regarding PROFINET bus configuration

PN1 Bus configuration (online)

Read in the connected PROFINET devices using the training computer. Copy the devices
shown in the dialog box and make the configuration settings as specified by your speaker.

Documentation: Pages 5-6ff.

Tasks

E01 - 5

Tasks regarding configuration and variables

PV1 Creating process data variables

In the Process Data Assignment view, you will create global variables based on the process
data objects that are provided by the configured devices. These automatically created

Documentation: Page 6-6
Context menu for the process data objects of the modules

What is the relation between the automatically generated variable name and the process
data object used?

Tasks

E01 - 6

PV2 I/O control for process data variables

Once you have created variables for the process data objects to be used, compile the
project:

Click the icon above or the F9 function key.

After successful compilation, transmit the project to the main memory of your controller.

Documentation: Page A1-10

Change to Programming View (if not already done) and open the global variables table. The
variables that you created yourself have automatically been added to the Auto group.
Minimize all other variable groups (Default, System Variables) and activate the debug mode
(status indicator) of the controller.

Click the icon above or the F10 function key.

Check the states of your input variables and click the button to the left of the variable names
to open the debug dialog box for individual variables. Check the functionality of your outputs
by controlling them.

Tasks

E01 - 7

PV3 Adapting variable names

In the global variables table, modify the names of the automatically generated variables so
that they can easily be related to hardware connection.

Create a new Process Variables variables group and shift the variables to this group without
losing the connection to process data.

Context menu for a variables group

In variables tables, contents can simply be overwritten after selecting the cell.
When a cell is selected, the cursor jumps to position 1 of the text when using
the Pos1 key, and to the end when using the End key.

To mark a row, the gray button in variables tables located left to the variable
name can be used. If a row is marked, it can be moved exactly using a red
target line (without losing process data connection).

the
given in tabular form.

Tasks

E01 - 8

PV4 Use of direct inputs (optional)

In the global variables table, direct controller inputs and outputs are available as system
variables. For reasons of compatibility, these variables must not be renamed. However, to
make them available to the project in a customized manner, it makes sense to copy these
signals to individually named variables in the program called first within a PLC cycle.

PV5 Customization of the project

If a project template is used, the elements in the project tree always receive the same
standard names. Adapt these to the course standard using the Element Properties dialog
box.

The Element Pproperties dialog box of the project tree can be called via the key
combination Alt+Enter or via the context menu.

Tasks

E01 - 9

Tasks regarding programming in function block diagram

FBDa First programming

In the worksheet of the PG_Course program, develop programming in such a way that the
requirements below will be met.

To parameterize your logic connection, use your automatically created and renamed
variables instead of the names predefined in the table.

Documentation: Page 12-6
Documentation: Section 10
Block help from the context menu/edit wizard/appendix

Instead of using a NOT block, some blocks (e.g., those the Boolean logic can
be used for) allow input and output parameters to be inverted.

Tasks

E01 - 10

FBDb First function

Add a Functions POU group to your project tree. To this group, add a new function with the
name FU_Start_FBD using function block diagram as the programming language.

This function should provide the same logic as the previous programming and should be
called in the program (instead of the previous programming).

parameters of the function instead of global variables.

When assigning names to input parameters of function and function blocks, use
more general names such as IN1 and IN2 instead of Switch1 and Switch2. The
selection of a name should be based on the parameter function and not on the
process variable that is accidentally connected to the parameterizable block
within a project.

Documentation: Section 10 and pages 13-5ff.

Tasks

E01 - 11

FBD1 Function FU_Xor3_FBD

Add a function with the name FU_Xor3_FBD to your project tree. This function should meet
the following requirements:

Block help from the context menu/edit wizard/appendix

Instead of using a NOT block, some blocks (e.g., those the Boolean logic can
be used for) allow input and output parameters to be inverted.

For a systematic approach, check the cases where the output parameter should
have the value . Represent these cases separately.

Tasks

E01 - 12

FBD2 Function block FB_TFlipflop_FBD

Add a Function blocks POU group to your project tree. To this goup, add a new function
block with the name FB_TFlipflop_FBD
using function block diagram (FBD) as the programming language.

The function block should behave as follows:

If a rising edge is detected at the IN input parameter, then the OUT output parameter is to be
inverted.

Block help from the context menu/edit wizard/appendix

Divide the task in two subtasks and combine the solutions afterwards.
Formulate the task for yourself.

Blocks that can be helpful for creation (not all of them must be used):

Tasks

E01 - 13

FBD3 Function block FB_Cascade_cycle_FBD

Add a function block with the name FB_Cascade_cycle_FBD to your project tree using
function block diagram as the programming language.

The function block should behave as follows:
If the IN_xActive input parameter is set to True, the OUT_xSignal output parameter should
immediately follow and be set to True. As long as IN_xActive is set to True, the OUT_xSignal
should be set to True for the time specified for IN_tOn and then switch to False for the time
specified for IN_tOff. This switching shall continue until IN_xActive is set to False. In this
case, the OUT_xSignal should also change to False immediately.

This behavior is shown in the following diagram:

Block help from the context menu/edit wizard/appendix

Use the time diagram to develop programming step by step, i.e. section by
section.

An alternative option is based on the idea of two overlapping signals: the
continuous activity signal and an alternating interference signal.

Blocks that can be helpful for creation:

Tasks

E01 - 14

FBD4 Functions for analog value processing

[a] Basic functions: FU_Norm_FBD

Add a function with the name FU_Norm_FBD to your project tree. This function is to scale
an analog value provided by an analog input module according to the following scheme:

Analog input value Representation Scaled value

0-10V

Block help from the context menu/edit wizard/appendix
Device data sheet

Please note that a conversion in data types is required for scaling. These data
types are intended for parameterizing arithmetic basic functions and provide a
value range sufficient for calculations.

Blocks that can be helpful for creation (not all of them must be used):

Tasks

E01 - 15

[b] Extension by binary range selection: FU_NormSel_FBD

In the project tree, create a copy of the function programmed for task [a]. Change the POU
name to FU_NormSel_FBD and add the parameter to the programming.
This parameter causes the scaled value to be indicated in percent (with =

) or in per mil (with =).

Analog Scale Representation Scaled value
input value
0-10V
0-10V

Additional blocks that can be helpful for creation:

[c] Extension for user-defined scaling: FU_NormMinMax_FBD

In the project tree, create a copy of the function programmed for task [a]. Change the POU
name to FU_NormMinMax_FBD and add two INT input parameters - and

 - to the programming. These allow the user to dynamically adjust the upper and
lower value of the scaled value via the defined values. Scaling should be linear.

Analog Min..Max Representation Scaled value
input value
0-10V

Additional blocks that can be helpful for creation:

Tasks

E01 - 16

 Tasks regarding programming in ladder diagram

LD1 Function FU_Xor3_LD

Add a function with the name FU_Xor3_LD to your project tree. This function shall perform
the same task as the function of task FBD1.

Tasks

E01 - 17

LD2 Function block FB_TFlipflop_LD

Add a function block with the name FB_TFlipflop_LD to your project tree. This block shall
perform the same task as the function block of task FBD2.

Consider how you can realize and program an edge evaluation using the elements of ladder
diagram and, in addition to this, implement the inversion via contacts and coils, in order to
not require the use of function blocks.

Tasks

E01 - 18

Tasks regarding programming in instruction list

IL1 Function FU_Xor3_IL

Add a function with the name FU_Xor3_IL to your project tree. This function shall perform
the same task as the function of task FBD1.

Documentation: Page 14-6

Tasks

E01 - 19

IL4 Functions for analog value processing

[a] Basic functions: FU_Norm_IL

Add a function with the name FU_Norm_IL to your project tree. This function shall perform
the same task as the function of task FBD4[a].

Documentation: Page 14-10

For branches to be executed in parallel, use brackets or local variables
(intermediate markers) in instruction list.

[b] Extension by binary range selection: FU_NormSel_IL

Add a function with the name FU_NormSel_IL to your project tree. This function shall
perform the same task as the function of task FBD4[b].

[c] Extension for user-defined scaling: FU_NormMinMax_IL

Add a function with the name FU_NormMinMax_IL to your project tree. This function shall
perform the same task as the function of task FBD4[c].

Tasks

E01 - 20

IL3 Function block FB_Cascade_cycle_IL

Add a function block with the name FB_Cascade_cycle_IL to your project tree. This block
shall perform the same task as the function block of task FBD3.

Documentation: Page 14-12

Tasks

E01 - 21

IL2 Function block FB_TFlipflop_IL

Add a function block with the name FB_TFlipflop_IL to your project tree. This block shall
perform the same task as the function block of task FBD2.

Consider how you can realize and program an edge evaluation using the elements of
instruction list and, in addition to this, implement the inversion via conditional execution, in
order to not require the use of function blocks.

Documentation: Page 14-15

Tasks

E01 - 22

Tasks regarding programming in sequential function chart

SFC5 Function block FB_Traff_light_SFC

[a] Basic functions
Add a function block with the name FB_Traff_light_SFC to your project tree. This function
block is to be programmed in sequential function chart (SFC).

In the first step, the basic functions of a single signal device are implemented, i.e. the
sequence Red | Red-Yellow | Green | Yellow.

The input parameters (Time data type) are used to provide the block with the phase lengths.
The individual light controls are called via the output parameters.

The output parameters should be created as action variables (without using action zooms).
The transitions, however, should be programmed as transition zooms (any IEC 61131
language).

The sequence of the corresponding light phase is used as a transition condition.

Documentation: Section 16

Tasks

E01 - 23

[b] Extended functions with error flashing
Add the IN_xInterrupt input parameter to the function block created for task [a]. Controlling
this input should enable direct jumping to an alternative branch which has been inserted in
parallel to the four previous action steps. Its sequence triggers a flashing yellow light (f = 1
Hz). This error mode is to be replaced by normal operation after resetting the IN_xInterrupt
input parameter.

The deactivation of the currently active step (all steps except for the error mode steps) and
the activation of the first error step is to be implemented via the StepName.x step flag (e.g.
S_RedYellow.x) of the steps.

As each transition zoom is executed in each cycle, the required error logging
can be implemented in each zoom. It would make sense to implement this
programming in the zoom of the initial step.

Use the following step scheme as an orientation help for programming:

The step chain shown above uses four steps for traffic light control in normal
operation, two steps for error flashing and an additional step as the initial step.

Tasks

E01 - 24

 Tasks regarding programming in structured text

ST1 Function FU_Xor3_ST

Add a function with the name FU_Xor3_ST to your project tree. This function shall perform
the same task as the function of task FBD1.

Documentation: Page 18-6

Tasks

E01 - 25

ST4 Functions for analog value processing

[a] Basic functions: FU_Norm_ST

Add a function with the name FU_Norm_ST to your project tree. This function shall perform
the same task as the function of task FBD4[a].

Documentation: Page 18-8

For functions to be executed in parallel and serially, you have to use brackets or
local variables (intemediate markers) in structured text.

 [b] Extension by binary range selection: FU_NormSel_ST

Add a function with the name FU_NormSel_ST to your project tree. This function shall
perform the same task as the function of task FBD4[b].

[c] Extension for user-defined scaling: FU_NormMinMax_ST

Add a function with the name FU_NormMinMax_ST to your project tree. This function shall
perform the same task as the function of task FBD4[c].

Tasks

E01 - 26

ST3 Function block FB_Cascade_cycle_ST

Add a function block with the name FB_Cascade_cycle_ST to your project tree. This block
shall perform the same task as the function block of task FBD3.

Documentation: Page 18-10

ST2 Function block FB_TFlipflop_ST (optional)

Add a function block with the name FB_TFlipflop_ST to your project tree. This function shall
perform the same task as the function block of task FBD2.

Consider how you can do without function blocks when using high-level language structures.

Documentation: Page 18-17

Re-read the formulation of functionality in task FBD2.

Tasks

E01 - 27

ST5 Function block FB_Traffic_lights_ST (optional)

[a] Add a function block with the name FB_Traffic_lights_ST to your project tree. This block
shall perform the same task as the function block of task SFC5.

Consider how you can implement the step chain following the example of the
alternative solution for FBD3.

Documentation: Page 18-23

 [b] Extend programming by an IN_xInterrupt input parameter, in the same way as with
sequential function chart.

Tasks

E01 - 28

ST6 Logging of INTERBUS errors with FIFO memory

The target of the complex task ST6 is to log bus errors reported by the INTERBUS controller
(including date, time, segment, position and plain text information on the respective device).
This error message should be recorded in a FIFO (First In First Out) memory using ten
elements. Element 1 should always be used to output the current error message.

[a] Data type definition
1. Definition of a structure data type according to the message requirements

ST_Message
Date Type:

 Type:
Segment Type:
Position Type:

2. Definition of an array data type according to the message list requirements

AR_1_10_Message

Type:

Tasks

E01 - 29

[b] Program for error logging:
Add a program with the name PG_Messages in structured text to your project tree. Once
completed, instantiate the program by calling the cyclic task available in your project under
the name I_Messages.

For information on functions required for the following tasks, please refer to the
last pages of the task in hand.

The program should perform the following tasks in five steps:

1. Processing values provided by the system variables and saving them to local variables.

Use two-digit values for day, month, hour, minute, and second. Use a four-digit value for the
year.

Variable Usage Data type
strDay VAR
strMonth VAR
strYear VAR

strHour VAR
strMinute VAR
strSecond VAR

iSegment VAR
iPosition VAR

2. Combining time and date values to string variables of the following format:

Use the standard formats for date and time:
Example for date:
Example for time:

Variable Usage Data type
strDate VAR
strTime VAR

Tasks

E01 - 30

3. Entering the compiled information of the previous steps in a local variable.

Variable Usage Data type
stCurrentMessage VAR

Graphical overview of conversions and assignments (selection)

Tasks

E01 - 31

4. Creating a global variable for entering the current message. This variable represents
the message list.

Variable Usage Data type
arMessageList VAR_GLOBAL

To update the message list, first copy the content of element 9 to element 10, then from
element 8 to element 9, etc. Finally, the current message is entered in element 1.

This update can be done manually by means of ten separate statements or
implemented via a For loop and an additional assignment. The For loop is not
able to count down the control variable. This represents a special challenge
when programming the For loop.

5. Conditional execution of the entry routine

The entry routine should only be executed, if the falling edge of the error-detecting bit and
the pending bus error bit of the INTERBUS master are detected by the program. With regard
to detection, use the system variables provided by the controller (additional information can
be found in the appendix).

Tasks

E01 - 32

[c] Device name in plain text
The following tasks enable the respective device name to be shown in plain text.

1. Extending the ST_Message data type by one parameter.

ST_Message
Date Type:

 Type:
Segment Type:
Position Type:

 Type:

2. Integrating a user library.

Integrate the BIB_IBS_CFG_INFO_V1_0_D.zwt library in the current project.

The library provides the following elements:

Data types:

IBS_ST_DevInfo
Name Type:
Segment Type:
Position Type:
Active Type:

 Type:
PF Type:

IBS_AR_1_512_DevInfo

IBS_ST_CfgInfo
 Type:
 Type:

Programs:

PG_InterbusConfiguration

The program reads the active INTERBUS configuration from the INTERBUS master using
the Read_Complete_Configuration firmware service and determines the number of devices
within the configuration. The data acquired is entered in the stIBS structure variables
(module segment and position, active status and jumpered status, peripheral fault occurred).
The structure variables are sorted according to the consecutive number of the modules. In
addition, the program reads the Diag32 file saved on the memory card of the controller by
sending the boot project. In the stIBS variable, the station names for the IBS modules which
are saved in this file (with the initial value for the variable =
10) are added to the already acquired module information.

Tasks

E01 - 33

3. Program call and parameterization

Instantiate the program provided by the library and call the program via the cyclic task
available in your program.

In the context menu of the project tree, select the function for transforming VAR_EXTERNAL
into VAR_GLOBAL.

For the variable, assign the value specified in the
description.

4. Using the device name from the configuration structure variable.

Check the stIBS variable for entries with regard to segment and position and use the entered
name from the variable, on condition that both parameters match the values currently
provided by the IBS master.

Consider the following situations: The IBS master is reported as a faulty
segment (segment: 0) or an OUT1 or OUT2 device interface error has occurred.
In the event of interface errors, the segment variable indicates the segment of
the reporting remote bus device, the position variable has the value 80hex for
OUT1 or 81hex for OUT2.

Tasks

E01 - 34

Support for task ST6

For [b] 1. System variables, realtime clock, INTERBUS diagnostics

The following system variables provide information on the system time of the
ILC:

RTC_Year INT (four-digit)
RTC_Month INT
RTC_Day INT
RTC_Hours INT (24h-indication)
RTC_Minutes INT
RTC_Seconds INT

The following variables provide information on the bus error, active bus error
diagnostics and the respective device:

MASTER_DIAG_PARAM_REG_HI BYTE (Segment)
MASTER_DIAG_PARAM_REG_LOW BYTE (Position)
MASTER_DIAG_STATUS_REG_BUS BOOL (IBS bus error)
MASTER_DIAG_STATUS_REG_DTC BOOL (IBS diagnostics active)

For [b] 1. Data type conversion Word_To_Int

When converting a byte variable into an integer value, please note that the most
significant bit is the sign bit. If a byte without sign bit is to be converted, it is
recommended to use the word data type in a roundabout way. The call structure
is then as follows:

This is the nested call of functions, as it is typical for structured text. Example for
conversion with sign bit:

-

Tasks

E01 - 35

For [b] 1. Data type conversion Int_To_String

INT_TO_STRING is the function for converting an integer variable in a string
variable. This function requires two input parameters, i.e. the integer to be
converted (of integer type) and the format (of string type) into which the string is
to be converted. The call in structured text is as follows:

Example:

INT_Value :
Format:
String:
(The number is indicated with two digits and leading zeros.)

INT_Value:
Format:
String:
(The number is indicated with four digits and leading zeros.)

For [b] 2. Concat string concatenation

CONCAT is the function for combining two strings to a new string. It is used as
follows:

Example:

String 1 :
String 2:
New string:

Spaces in the string (as in front of) are also used. Please consider that
only two values can be combined using CONCAT. To set up date and time,
CONCAT has to be called four times in each case.

Solutions

S01 - 1

Solutions for the
PC WORX IEC 61131 Programming Course

Latest version: 5. Februar 2014
Reference: PC WORX 6.00.25 SP3.73

Solutions regarding programming in function block diagram 2
FBDa First programming 2
FBDb First function 2
FBD1 FU_Xor3_FBD 3
FBD2 FB_TFlipflop_FBD 4
FBD3 FB_Cascade_cycle_FBD 5
FBD3 FB_Cascade_cycle_FBD (alternative solution) 6
FBD4[a] FU_Norm_FBD 6
FBD4[b] FU_NormSel_FBD 7
FBD4[c] FU_NormMinMax_FBD 8

Solutions regarding programming in ladder diagram 9
LD1 FU_Xor3_LD 9
LD2 FB_TFlipflop_LD 10

Solutions regarding programming in instruction list 11
IL1 FU_Xor3_IL 11
IL4[a] FU_Norm_IL 12
IL4[b] FU_NormSel_IL 13
IL4[c] FU_NormMinMax_IL 14
IL3 FB_Cascade_cycle_IL 15
IL3 FB_Period_cycle_IL (alternative solution) 16
IL2 FB_TFlipflop_IL 17

Solutions regarding programming in sequential function chart 18
SFC2 FB_TFlipflop_SFC (no task assigned) 18
SFC5[a] FB_Traff_light_SFC 19
SFC[b] FB_Traffic_lights_SFC 20

Solutions regarding programming in structured text 22
ST1 FU_Xor3_ST 22
ST4[a] FU_Norm_ST 23
ST4[b] FU_NormSel_ST 23
ST4[c] FU_NormMinMax_ST 23
ST3 FB_Cascade_cycle_ST 24
ST3 FB_Period_cycle_ST (alternative solution) 24
ST2 FB_TFlipflop_ST 25
ST5 FB_Traffic_lights_ST 26
ST6[a] Data type declaration 28
ST6[b+c] PG_Messages 29

Solutions

S01 - 2

Solutions regarding programming in function block
diagram

FBDa First programming

Variables table

Programming

FBDb First function

Variables table

Programming

Solutions

S01 - 3

FBD1 FU_Xor3_FBD

Variables table

Programming

Solutions

S01 - 4

FBD2 FB_TFlipflop_FBD

Variables table

Programming

Alternative programming

Solutions

S01 - 5

FBD3 FB_Cascade_cycle_FBD

Variables table

Programming

Solutions

S01 - 6

FBD3 FB_Cascade_cycle_FBD (alternative solution)

Variables table

Programming

FBD4[a] FU_Norm_FBD

Variables table

Programming

Solutions

S01 - 7

FBD4[b] FU_NormSel_FBD

Variables table

Programming

Solutions

S01 - 8

FBD4[c] FU_NormMinMax_FBD

Variables table

Programming

Solutions

S01 - 9

Solutions regarding programming in ladder diagram

LD1 FU_Xor3_LD

Variables table

Programming

Solutions

S01 - 10

LD2 FB_TFlipflop_LD

Variables table

Programming

Solutions

S01 - 11

Solutions regarding programming in instruction list

IL1 FU_Xor3_IL

Variables table

Programming

Solutions

S01 - 12

IL4[a] FU_Norm_IL

Variables table

Programming

Solutions

S01 - 13

IL4[b] FU_NormSel_IL

Variables table

Programming

Solutions

S01 - 14

IL4[c] FU_NormMinMax_IL

Variables table

Programming

Solutions

S01 - 15

IL3 FB_Cascade_cycle_IL

Variables table

Programming

Solutions

S01 - 16

IL3 FB_Period_cycle_IL (alternative solution)

Variables table

Programming

Solutions

S01 - 17

IL2 FB_TFlipflop_IL

Variables table

Programming

Solutions

S01 - 18

Solutions regarding programming in sequential function
chart

SFC2 FB_TFlipflop_SFC (no task assigned)

Variables table

Programming

Solutions

S01 - 19

SFC5[a] FB_Traff_light_SFC

Variables table

Programming

Detail programming

Solutions

S01 - 20

SFC[b] FB_Traffic_lights_SFC

Variables table

Programming

Solutions

S01 - 21

Detail programming (in addition to part [a])

T_Start

T_Interruption

T_YellowOn/YellowOff

Solutions

S01 - 22

Solutions regarding programming in structured text

ST1 FU_Xor3_ST

Variables table

Programming

Solutions

S01 - 23

ST4[a] FU_Norm_ST

Variables table

Programming

ST4[b] FU_NormSel_ST

Variables table

Programming

ST4[c] FU_NormMinMax_ST

Variables table

Programming

Solutions

S01 - 24

ST3 FB_Cascade_cycle_ST

Variables table

Programming

ST3 FB_Period_cycle_ST (alternative solution)

Variables table

Programming

Solutions

S01 - 25

ST2 FB_TFlipflop_ST

Variables table

Programming

Alternative solution

Solutions

S01 - 26

ST5 FB_Traffic_lights_ST

Variables table

Solutions

S01 - 27

Programming

Solutions

S01 - 28

ST6[a] Data type declaration

Worksheet for user-defined data types

Solutions

S01 - 29

ST6[b+c] PG_Messages

Local variables table

Global variables table (extract)

Solutions

S01 - 30

Programming

Solutions

S01 - 31

