Modeling Constraints with Parametrics (Part 1 – SysML Concepts)

Section Objectives

- √ In this Section, you will learn:
 - How to model Constraints with Parametric Diagrams in SysML

Overview

- This section will discuss:
 - Parametric Modeling Concepts
 - Why Model Parametric Diagrams?
 - Defining Parametric Models
 - **Basics of Constraint Modeling**
 - Defining Constraints in Constraint Blocks
 - Defining and Using Constraint Blocks
 - Binding Parameters in a Parametric Diagram
 - **♥** Constraining Value Properties of a Block
 - **Applications of Parametric Diagrams**
 - Modeling Constraints for In-Class Project

Acknowledgments

- Portions of this work are from the book, A Practical Guide to SysML, by Sanford Friedenthal, Alan Moore, and Rick Steiner, published by Morgan Kaufmann Publishers, Copyright 2009 Elsevier Inc. All rights reserved.
 - This section is based primarily on Chapter 7 of A Practical Guide to SysML

Why Model Parametric Diagrams?

- Used to depict constraints on value properties
- Parametric Models capture analysis, such as:
 - Performance
 - **♦** Reliability
 - **₽** Cost
- Parametric Models support:
 - Sensitivity analysis
 - Trade-off studies
 - Design optimization
 - Design verification
- Provides a link between the system design model and the analysis models
 - Each design may have multiple parametric diagrams each of which captures a particular analysis

Defining Parametric Models

- Parametric models:
 - Depict a network of equations that constrain the properties of blocks
 - The properties of the system are bound to the parameters of the analysis equations (e.g. vehicle mass is bound to 'm' in F=m x a)
- Example: in the figure, properties of the vehicle are bound to the parameters of the equations used to analyze vehicle stopping distance
- Parametric models thus help identify the properties of the system that are critical to satisfying requirements

© 2006-2008 by Object Management Group.

Performing the Analysis

- Parametric diagrams capture the analysis
- The paramteric model is then provided to an engineering analysis tool to perform the analysis (e.g. performance, reliability, cost)
- The analysis results are property values that can be incorporated back into the SysML model

Basics of Constraint Modeling

- Defining Constraints in Constraint Blocks
- Defining and Using Constraint Blocks
- Binding Parameters in a Parametric Diagram
- **♥**Constraining Value Properties of a Block

Defining Constraints in Constraint Blocks

- **Onstraint Blocks**
 - **Support the construction of parametric models**
 - Define equations so that they may be re-used and inter-connected
 - Define a set of parameters
 - Contained in the 'parameters' compartment
 - Define an expression that constrains the parameters
 - **♦** Contained in the 'constraints' compartment
 - **♡** Depicted with the keyword <<constraint>>

Defining and Using Constraint Blocks

- The definition of a Constraint Block is depicted on a BDD
- The use of a Constraint Block is called a Constraint Property and is depicted on a Parametric diagram
- The frame of the Parametric diagram represents a Block or a Constraint Block
 - Similar to BDD IBD relationship
- Parameters are shown as small rectangles flush with the inner surface of the diagram frame or Constraint Property

Binding Parameters in a Parametric Diagram

- The interconnection between parameters is shown on a Parametric diagram using binding connectors
- Binding connectors depict an equality relationship between the two connected parameters or between a parameter and a value property

Parametric Diagrams Constrain Value Properties of a Block

- √ Value Properties are depicted as rectangles on a Parametric Diagram
- Nested Value Properties can be depicted in two ways
 - Nested within its containing part symbol
 - Dot notation, where each level of nesting is separated by a dot

Applications of Parametric Models

- Modeling Sensitivity Analysis
- Modeling Trade Studies
- **☼**Modeling Design Optimization

Modeling Sensitivity Analysis

- SysML Block Definition and Parametric diagrams can be used to model a Sensitivity Analysis
- Block Definition Diagram defines the Analysis Context
 - Defines the constraint blocks used in an analysis
 - Constraint blocks define the generic equations to be used

Modeling Sensitivity Analysis (cont'd)

- Parametric Diagram
 - Depicts how the equations are used to perform the analysis
 - Depicts how the Parameters of the equations are bound to each other, to the properties of the system or environment that is being analyzed
- **☼**Sensitivity analysis is used to determine which property values have an impact on a requirement

Modeling Trade Studies

- SysML Block and Parametric diagrams can be used to model a Trade Study and its results
- **Trade Studies are used to compare alternative solutions**
- MOE's are used to define a property to be evaluated in a trade study
- Objective Functions are used to evaluate the MOE's
 - **Objective Functions are a kind of Constraint Block**
 - Parameters of an Objective Function are related to MOE's using Parametric diagrams

Modeling Trade Studies (cont'd)

- The set of possible solutions for the Trade Study can be depicted as specialized blocks to a general block
- The general block defines all of the MOE's
- The specialized blocks provide different values for the MOE's

Modeling Trade Studies (cont'd)

- Trade Study Block:
 - **♣** References:
 - Blocks that represent the different alternatives
 - **♦** Comprised of:
 - ☼ Objective Function, that is used to evaluate the alternatives
 ☼ Value Properties, to capture the score for each alternative

Modeling Trade Studies (cont'd)

Parametric diagrams are then used to relate the MOE's to the parameters of the Objective Function

The Objective Function (score) specifies the overall value of each

alternative

© 2008 Elsevier, Inc.: A Practical Guide to SysML

Modeling Design Optimization

- A Top-level Parametric Diagram can be used to model how an optimization function defines an overall operational effectiveness in terms of various MOEs
- Lower-level Parametric Diagrams can be established for analyzing each MOE

This provides a flowdown from the top-level MOE to critical system

properties

Modeling Parametrics for In-Class Project

Top-Level Parametric Diagram for Gate System

Availability Analysis

Summary

- Parametric diagrams
 - **♥** Capture the analysis as a network of equations
 - Help ensure consistency between the system design model and multiple engineering analysis models
 - Help to manage technical performance measures
- **Constraint Blocks**
 - Define parameters and constraint expressions
 - Represented on a Block Definition Diagram
- **Constraint Property**
 - Usage of constraint blocks
 - **♦** Represented on a Parametric Diagram