Course Overview, Objective, Approach, and Details

Section Overview

- This section will cover:
 - **Course Overview**
 - **Objectives**
 - **♦** Course Approach
 - **Course Details**

Course Overview

- This course will address the following topics:
 - High level overview of Systems Engineering

 - Introduction to the OMG Systems Modeling Language (OMG SysML™)
 - √ Introduction to the SysML Tool Sparx Enterprise Architect (EA™)
 - **♣** Applying Sparx EA [™] to modeling of sample systems

Course Overview

- **The course is intended for:**
 - Associate, Senior, and Principal Professional staff interested in learning about MBSE and SysML, and in investigating the possible use of MBSE with SysML tools in systems engineering and architecting projects.
- Assumptions
 - Systems Engineering background
 - No prior SysML or UML knowledge required or assumed

Course Overview

- **♦** Course Text:
 - The Systems Modeling Language"; Friedenthal, Moore, and Steiner; 2009, Elsevier, Inc.
- **♦** Software:
 - √ Visual Paradigm Community Edition, version 17.2 with SysML

Course Objective

- Primary course objective is:
 - Gain an understanding of the use of SysML and SysML tools to develop systems models and artifacts in support of MBSE

What's Covered?

- Three things you need to learn about modeling:
 - Language
 - √ Tool
 - Methodology
- Focus of this course is:
- **7** Various Methods available
 - **Traditional structured analysis**
 - Object-oriented

Course Approach

- The course will focus on providing the student with a working knowledge of MBSE and its value in the overall development of systems.
- Each class will include PowerPoint-based lectures and class discussions on SysML concepts.
- Each class will also include hands-on training in the basic use of MBSE with the SysML tool (Visual Paradigm)

Course Schedule

Section	Hour	Topic	Chap
1	1&2	Course Overview, Systems Engineering Overview, Model	1, 2, 3
		Based Systems Engineering Overview, and SysML	
		Overview	
2	1&2	Organizing the Model with Packages and EA Basics	5
3	1&2	Modeling Functionality with Use Cases	11
4	1&2	Modeling Requirements and their Relationships	12
5	1&2	Modeling Structure with Blocks	6
		(Block Definition Diagrams)	
6	1&2	Modeling Structure with Blocks (Internal Block Diagrams)	6
7	1&2	Modeling Flow-Based Behavior with Activities	8
8	1&2	Modeling Event-Based Behavior with State Machines	10
9	1&2	Modeling Message-Based Behavior with Interactions	9
10	1&2	Modeling Constraints with Parametrics	7
11	1&2	Modeling Cross-Cutting Relationships with Allocations	13

Typical Section Structure

- Homework Review
- Introduction
 - Motivation for a particular diagram
- Language Concepts
 - Diagram Elements (textbook)
- √ Tool Usage
 - Using Enterprise Architect to Model a particular diagram type
- Modeling Example (In-Class Project)
 - Parking Garage Gate
- Homework Assignment

Homework

- Homework will include assigned readings from the course text, as well as hands-on development of MBSE artifacts using Sparx EA
- √ Two Systems to Model

 - **☼** Coke Machine
- - **Familiarity**
 - **♥** Relatively Simple Systems
 - **©** Compare and Contrast
 - Practice
- **♦** Groups
 - Form Group Homework teams of 3-5 students/team

Grading

- **♦** Course is Pass/Fail
- √ No Tests
- **♥**Grades are based solely on Homework and Class Participation

Course Philosophy

- Modeling there is no 'one' right answer
- Need to practice to learn
- **Description** Essential vs Complete Information
 - Focus of course is on what's essential
 - Lots of information in the book is not covered
 - Not enough time
 - Too much detail for an Intro course
- **♦** Goal Time Savings
 - Discerning the basics of SysML
 - Learning the basics of using the EA Tool

Notes

- Remote students may want to print out slides prior to each class
 - **♦** In case there are connectivity issues
- **Ourse SharePoint site:**

 - **♥** Course lecture slides will be posted
 - https://partners.jhuapl.edu/Projects/SEP2009MBSE/default.aspx
- **♦** If you miss class:
 - **♥** Classes will be recorded in MeetingPlace
 - **Description** Lecture Slides will be available on SharePoint site

Acknowledgments

- Portions of this work are from the book, A Practical Guide to SysML, by Sanford Friedenthal, Alan Moore, and Rick Steiner, published by Morgan Kaufmann Publishers, Copyright 2009 Elsevier Inc. All rights reserved.
- **☼** Course Material Peer Review
 - All course material was presented at INCOSE OOSEM Working Group meetings for review and comment
 - ☼ INCOSE OOSEM Working Group consists of subject-matter experts with numerous years of experience in Systems and Software Engineering, MBSE, UML, and SysML
 - Course material was reviewed incrementally by the Working Group
 - Course Outline
 - Section Development
 - Contributions to post-course improvements

Introductions

- Name and Department
- Brief Background
 - Technical focus area
 - **UML** Experience
 - **SysML** Experience
 - **Enterprise Architect Experience**