Modeling Structure with Blocks - Block Definition Diagrams (Part 1 – SysML Concepts)

Section Objectives

- **♦** In this Section, you will learn:
 - How to model Block Definition Diagrams in SysML

Overview

- This section will discuss:
 - **♥** Block Concepts
 - Defining Blocks
 - **∜** Why model Blocks?
 - Purpose of Block Definition Diagrams
 - Depicting Relationships between Blocks
 - Depicting and Defining Block Characteristics
 - How to model Blocks
 - **™**Modeling Blocks for In-Class Project

Defining Blocks

- Blocks are the basic structural element used to model the structure of systems
- **♥** Blocks can be used to represent:

 - **System components (Hardware and Software)**
 - The Items that flow
 - **♥** Conceptual entities and logical abstractions
- Blocks are depicted as a rectangle with compartments that contain the block characteristics, such as:
 - √ Name (mandatory)
 - Properties (e.g. parts, values, ports)
 - Operations
 - Requirements that the block satisfies

Petc

Camera

parts

: Protective Housing

ma : Mount Assembly

: Camera Module

: Electronics Assembly

values

dimensions: Size

power: W field of view: °

orientation:

flow ports

in light in : Light

camera I/O: Camera Interface

standard ports

control: ICameraSignals

Wheel

values

pressure : psi

size: mm

Why Model Blocks?

- Used to define the domain model
 - Defines the glossary for the 'things' in the problem space
 - **♦ Graphically depicts how the 'things' relate to each other**
- **♥** Said in Systems Engineering terms:
- Depicts the static structure of a system
 - What the system consists of
 - How those components are related
- Part of the Physical Definition phase of Systems Engineering Method
- Clarification, Elaboration, Communication
 - Communication with Users, Domain Experts, Stakeholders
 - **©**Consistency in terminology among team members

Purpose of Block Definition Diagrams

- Depicting Relationships between Blocks
 - Associations
 - **Generalizations**
- Depicting Block Characteristics
 - Structural Characteristics
 - Part Properties
 - Value Properties
 - Flow Ports
 - **♣** Atomic Ports
 - Non-atomic Ports and Flow Specifications
 - Behavioral Characteristics
 - Operations
 - Receptions
 - Interfaces

Depicting Relationships between Blocks

- Associations
 - Part Associations
 - Shared Associations
 - **₱** Reference Associations
- Generalizations
- Example: Top Level Block Diagrams

Part Associations

- Block composition can be depicted using Part Associations
- Represents the Parts that make up the Whole
 - Depicted with a black diamond on the Whole end
- Multiplicity on the Whole end:
 - **♦ Lower bound may be 0 or 1:**
 - **♥ 0** means the Part can exist without the Whole
 - **1** means the Part always exists within the Whole
 - □ Upper bound is always 1
 - An instance of a Part may exist in only one instance of a Whole at a time
 - **♦** Depicts 'ownership'
 - Default is [0..1]
- Role names can appear on the part end of the association

© 2008 Elsevier, Inc.: A Practical Guide to SysML

Shared Associations

- Can be used to depict an aggregation of components into a logical subsystem
- Associated blocks are not 'owned' by the Whole
- Depicted with white diamond

Reference Associations

- Reference Associations can be used to specify a relationship between two blocks
- Can be used to depict a connection
- Can also be used to depict other relationships that exist between blocks

Generalizations

- Block Definition Diagrams can be used to depict generalization and specialization relationships
- **♣** Facilitates reuse
 - The specialized block (subclass) reuses (inherits) the features of a generalized block (superclass), and adds its own features
- ₱ Depicts an 'is-a' relationship
- Depicted with a closed arrowhead pointing toward the generalized block

Example: Top Level Block Definition Diagrams

Can be used to depict the problem domain and model scope

System of interest and the external systems that interact with it

Structural Characteristics of Blocks

- Part Properties
 - Multiplicities
- **Value Properties**
 - **♥ Value Types, Dimensions, and Units**
- **♦** Flow Ports
 - **Atomic Ports**
 - Non-atomic Ports and Flow Specifications

Protective Housing Mount Assembly Assembly

Part Properties

- Parts compartments list the Part blocks that make up the Whole block
- **♥ Same as Part Association relationship between blocks**
- Parts are listed in the *parts* compartment in the following format:
 - **♥** part name: block name [multiplicity]
- **♦ Part Names are typically used to specify a "role"**
 - **☼** Example below: "left front : Wheel"

 - The "Wheel" is the block name

Surveillance System

parts
: Monitoring Station
cameras : Camera [1..*]
: UI

parts : Protective Housing ma : Mount Assembly : Camera Module : Electronics Assembly

parts left front: Wheel right front: Wheel left rear: Wheel right rear: Wheel values weight: kg vehicle reg: String

Automobile

Protective Housing Mount Assembly Electronics Assembly Date: Image Processor: Image Assembly: Optical Assembly: Optical Assembly Imaging Assembly: Optical Assembly Pan Gimbal Pan Gimbal

Multiplicities

- Multiplicity specifies the potential number of Parts that the Whole may include
 - Depicted as "lower bound..upper bound", where:
 - Cover bound is the minimum number of Parts that make up the Whole
 O means the part is optional
 O means the part is

 - **♥** Default is [1..1], which means "exactly one"

Denotes that the Surveillance System consists of 1 to many cameras

parts
left front: Wheel
right front: Wheel
left rear: Wheel
right rear: Wheel
values
weight: kg
vehicle reg: String

Value Properties

- Used to model quantifiable block characteristics or attributes
- Based on a Value Type, which describe the values for quantities
- Listed in compartments using the following syntax:
 - √ value property name: value type name
- **♥ Value Properties:**

 - 🗗 can have initial values
 - Can also define a probability distribution for their values

Value Types, Dimensions, and Units

- √ Value Type is a form of data type (e.g. integer, real) with units (e.g. m = meter)
- **♥ Value Types may include a dimension and a unit**
 - Dimension identifies a physical quantity (e.g. length)
 - **♥ Unit identifies the unit of measure (e.g. meter)**
- **♥ Value Type is used to type a value property**

«valueType»
Size

values
width: m
height: m
length: m

«valueType»
m
dimension = Length
unit = Meter

«dimension» Length

«unit»

Meter

dimension = Length

Enumerations

A Value Type whose values are a set of literals (e.g. low, normal, high)

«enumeration» Image Quality

low normal high

Flow Ports

- Flow Ports used to describe an interaction point for items flowing in or out of a block
- √ Two types:
 - **Atomic Ports**
 - Non-atomic Ports
- Can be depicted as a box on the block border or in a block compartment

Atomic Ports

- ♣ Atomic Flow Ports specify a single type of input or output flow
- Flow direction can be in, out, or inout
- Described as follows:
 - port name: item name[multiplicity], where:
 - The litem name is the name of the item flowing in or out of the block
 - Multiplicity is the number of instances of the port on an instance of the block

Behavioral Characteristics of Blocks

- Operations
- **♦** Receptions
- Interfaces

Operations

- **♦** Operations describe something that a block can do
- Operations can have parameters that are passed into or out of the operation
- **Operations** are typically synchronous, (i.e. requestor waits for a response)
- **♦ Operations are listed in the 'operations' compartment of a block, as follows:**
 - **♥** operation name (parameter list): return type

Receptions

- Receptions are asynchronous (i.e. the requestor does not wait for a response)
- - Example: TV receives a signal from a remote
- Signals define a message with attributes that represent the content of the message
- ☼ Receptions are listed in the 'receptions' compartment of a block, as follows:
 ☼ <<signal>> reception name (attribute list)

Interfaces (and Standard Ports)

- Interface symbols have operation and reception compartments like block symbols
- Provided Interface specifies operations that a block provides
 - Depicted by a 'ball' or a realization dependency
- Required Interface specifies operations required by the block
 - Depicted by a 'socket' or a uses dependency (not shown)

«interface»
User Login

operations
login(): String
logout(): String

How to Model Blocks

- Define the 'real-world' blocks within the problem space
 - What are the 'nouns' of your system?
- Depict Block relationships
 - How are the blocks related?
 - **♦** Part (ownership associations)
 - Reference ('shared' or some other relationship between blocks)
 - **♦ Generalization ('is-a')**
- Identify the multiplicity of the relationships
 - How many blocks of one type are related to one block of another?
- **♥** Identify the Value Properties for each block
 - **♥** What are the quantifiable attributes of each block?
- **♥** Identify the Flow Ports for each block
 - ♦ What flows in or out of the block?
- Identify the Behaviors for each block
 - **What functions does each block perform?**
- **∜**Iterate, as required

Modeling Structure for In-Class Project

- Create a Top Level BDD Diagram in EA for the Parking Garage Gate Domain
- - Depict Part associations
 - **☼** Include Operations for each Block
 - **Show a Generalization relationship**

Top Level Block Definition Diagram for Parking Garage Gate Domain

Block Definition Diagram for Gate System

Generalization/Specialization Relationship

Summary

- Block Definition Diagrams are used to depict the static structure of a system
 - What the system consists of
 - How those components are related to each other
- A Block is the basic structural element used to model the system's structure
- Block Definition Diagrams can depict Block structural characteristics, functional characteristics, and relationships
- Block structural characteristics include: part properties, value properties, and flow ports
- Block functional characteristics include: operations, receptions, and interfaces
- Block relationships include: associations and generalizations