Modeling Event-Based Behavior with State Machines (Part 1 – SysML Concepts)

Section Objectives

Overview

- This section will discuss:
 - State Machine Diagram Concepts
 - Why model State Machines?
 - **State Machine Diagram Components**
 - How State Machines are modeled
 - State Machine modeling for In-Class Project

Why Model State Machines?

- Used to model how a block changes state
 - **♦ State a significant condition in the life of a block**
 - **♦ Example: Light: ON or OFF**
- State Machines describe how a block transitions from one state to another
- Helps to define what happens when entering or exiting a state
- Graphical depiction of states, transitions, and events
- Clarification, Elaboration, Communication

State Machine Diagram Components

- **♦ State Machine diagrams can be comprised of the following:**
 - **♥** States (Includes Initial and Final States)
 - Behaviors
 - **Transitions**
 - **♦** Triggers
 - **₽** Guards
 - **☼** Effects
 - Composite States
 - **♦** Single Region
 - Multiple Regions
 - Pseudo-states
 - **♦** History
 - **₱** Forks and Joins
 - **⁷Choice**

States

- **♦ States represents a condition in the life of a block**
 - √ Name the state with the name of the condition (e.g. Operating)
- Initial State represented by a black solid dot
- **♥**Final State represented by a bulls-eye

Behaviors

- Actions of a State
 - - Description: Entry what happens when the state is entered
 - Exit what happens when the state is exited
 - **♥Do what happens while in a state**

Transitions

- Used to show the flow from one state to another (solid arrow)
- Can consist of triggers, guards, and effects

Triggers (Events)

- The Event that causes the transition to fire
- Indicates what causes the state to change
- Depicted with text on a transition

Event Types

- Signal Events indicate a new asynchronous message has arrived
- Time Events indicate that either a given time interval has passed since the current state was entered, or that a given instant in time has been reached (Keyword: 'after' or 'at')
- Change Events indicate that some condition has been satisfied (Keyword: 'when')

Call Events – indicate that an operation on the state machine's owning block has been requested.

| State | S

Guards

♣ An expression that must be true for transition to occur ♣ Contained in brackets [] on a transition

Effects (Behaviors)

- Describes the behavior that is executed when an event occurs, (i.e. the behavior that executes during transition from one state to another)
- ₱ Follows a '/' on a transition

Composite States – Single Region

- Means of depicting the hierarchy of states
- Sub-states states that are unique to another state of an entity
- Composite States are depicted by enclosing sub-states within a state

Composite States – Multiple (Orthogonal) Regions

- States can have more than one region
 - Used to show concurrent states
 - Each region defines a set of states
 - **♥**The states in a region are exclusive

Pseudo-states

- Elements that exist to determine the next active state in a state machine
 - **♦** History
 - ♦ Shallow
 - Deep
 - **Procession** Forks and Joins
 - Choice
 Ch

History (Shallow and Deep)

- Denotes that the active sub-state will be remembered when the block transitions out of a composite state
- The block will then return to that sub-state when the block transitions back into that composite state
- Shallow History remembers only the top-level state of the region Depicted by the letter H surrounded by a circle
- Deep History remembers the top-level state and the sub-states at all levels of nesting as well
 - Depicted by H* surrounded by a circle

Forks and Joins

- **♦** Fork Node
 - Has one incoming transition, and multiple outgoing transitions
 - Outgoing transitions lead to different orthogonal states
- √ Join Node
 - Has multiple incoming transitions, and one outgoing transition

Choice

- Allows one or more input paths, and one or more output paths
- **Transition flow is determined by Guards on output paths**

How State Machines are Modeled

- Didentify which entities (blocks) need to be modeled
 - **!** Identify entities with states
- Determine the Triggering Events related to the entity
 - What causes it to change state?
- List States that the Triggering Events cause
- Determine the Behaviors related to an entity
 - What happens when entering a state?
 - What happens while in a state?
 - **What happens when exiting a state?**
- Specify Composite States (if necessary)
- **♥**Create the State Machine diagram

State Machine Modeling for In-Class Project

- **♥** Build State Machine Model for Parking Garage Gate using EA
- Define

 - **♦** States
 - Behaviors and Effects

State Machine for Parking Garage Gate

Summary

- State Machines Diagrams are used to depict how a Block changes State
- **State Machines can be comprised of:**

 - **Transitions**
 - **©** Composite States
 - Pseudo-states
- **♦** States represent a condition in the life of a Block
- Behaviors are the actions associated with a State
- Transitions are used to show how a Block changes from one State to another
- Transitions can consist of Triggers, Guards, and Effects
- Composite States are used to depict the hierarchy of States

Homework

- Develop a State Machine Diagram for each of the following:
 - **☼** Alarm Clock Radio
 - **☼** Coke Machine
- Depict the associated:
 - **♦** States
 - **7** Triggers
 - Behaviors
 - **₽** Effects
- Depict Regions and Sub-states (if applicable)
- **∜**Read Overview Section on Interactions (Section 9.1) in text

